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Potentials with Convergent Schwinger± DeWitt
Expansion

V. A. Slobodenyuk1
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Convergence of the Schwinger±DeWitt expansion for the evolution operator
kernel for special class of potentials is studied. It is shown that this expansion,
which is in the general case asymptotic, converges for the potentials considered
(widely used, in particular, in one-dimensional many-body problems), and that
convergence takes place only for definite discrete values of the coupling constant.
For other values of the charge, a divergent expansion determines the kernels
having essential singularity at the origin (beyond the usual d -function). If one
considers only this class of potentials, then one can avoid many problems
connected with asymptotic expansions, and one gets a theory with discrete values
of the coupling constant that is in correspondence with the discreteness of charge
in nature. This approach can be applied to quantum field theory.

1. INTRODUCTION

In quantum theory, expansions in different parameters such as the cou-

pling constant (Bender and Wu, 1969, 1971a, b, Lipatov, 1977), the WKB

expansion, the short-time Schwinger±DeWitt expansion (Schwinger, 1951;

DeWitt, 1965; 1975), the perturbation expansion in phase space (Barvinsky

et al., 1995), the 1/n expansion (Popov et al., 1992), etc., are, as a rule,
asymptotic. This circumstance imposes essential restrictions on their use,

makes the theory incomplete, and compels one to look for ways of overcoming

these restrictions, either by summation of divergent series with special meth-

ods (see, e.g., Kazakov and Shirkov, 1980), or by constructing new convergent

expansions (Halliday and Suranyi, 1980; Ushveridze, 1983; Sissakian and

Solovtsov, 1992), or by creating different approximate methods taking into
consideration the so-called nonperturbat ive effects.
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Interesting information about a possible way of overcoming the problem

of divergences in some cases may be obtained from investigation of the time

dependence of the evolution operator kernel with the help of the Schwinger±
DeWitt expansion. For example, Osborn and Fujiwara (1983) studied a class

of potentials given by the family of bounded and continuous functions that

are formed from the Fourier transforms of complex bounded measures. An

important feature of this expansion is that after factorization of the contribu-

tion of the free kernel (ª freeº case corresponds to V [ 0), having at t 5 0

a singularity in the form of a d -function in space variables, one can concentrate
on the remaining part (denote it as F ) which, according to the initial condition,

should be equal to 1 when t 5 0. To understand the behavior at t 5 0 it is

necessary to make the analytical continuation, into the complex plane t. When

this continuation is made for the kernel, then its analytical properties are

masked by the singularity, which provides d -like behavior in space variables.

But if the factorization of the free part of the kernel is made, then the rest
of the function can be continued into the entire complex t plane and one can

accurately examine its properties in the neighborhood of the origin.

If the Schwinger±DeWitt expansion is convergent, then the point t 5 0

is regular and the initial condition is fulfilled in the rigorous sense. But if

this expansion is divergent [note that usually it is treated as asymptotic
(Osborn and Fujiwara, 1983; Slobodenyuk 1995, 1996a, b)], then the point

t 5 0 is essentially a singular point for the function F. In this case the initial

condition may be fulfilled only in the asymptotic sense. The function F tends

to 1 when t ® 0 along the real positive semiaxis as a continuous function,

but it is not analytic at t 5 0 and it does not have any meaning at this point.

Nevertheless, it is enough to fulfill the initial condition even in the
asymptotic sense that unambiguous solution of the evolution problem exists.

So, divergence of the Schwinger±DeWitt expansion does not put any formal

restrictions on the choice of the potentials in the quantum theory. But using

potentials with a divergent expansion (if the exact solution is not known) is

usually connected with problems of different divergences (see, e.g., Section 4).

There exists the possibility to avoid many of these problems in some
cases. If one considers the potentials for which the Schwinger±DeWitt expan-

sion converges, then one may get convergent representations for the kernel

and other physical values. Such nontrivial potentials really exist. This paper

is devoted to consideration of some examples of such potentials and to

proving convergence of the expansion for them. These are the potentials

being widely used in one-dimensional many-body problems (Olshanetsky
and Perelomov, 1983; Calogero et al., 1975; Sutherland, 1971, 1972). For

definite discrete values of the coupling constant their expansions are conver-

gent in the entire complex plane t. For other values of the charge the expan-

sions are asymptotic. The existence of such potentials is very interesting.
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Moreover, convergence of the expansion only for discrete values of the

coupling constant may be connected with the discreteness of charge in nature.

2. METHOD

The evolution operator kernel of the Schro
È
dinger equation in the one-

dimensional case is the solution of the problem

i
-
- t

^ q8, t | q, 0 & 5 2
1

2

- 2

- q 82 ^ q8, t | q, 0 & 1 V (q8) ^ q8, t | q, 0 & (1)

^ q8, t 5 0 | q, 0 & 5 d (q8 2 q) (2)

Here and everywhere below, dimensionless values, which are derived from

dimensional ones in an obvious way, are used for the sake of convenience.
The variable t is treated as a complex one. If one means the proper Schro

È
dinger

equation, then t is real. We imply that V (q) does not apparently depend on time.

As is well known, in the free case (V [ 0) the solution of the problem

(1), (2) is

^ q8, t | q, 0 & 5
1

! 2 p t
exp H i

(q8 2 q)2

2t J [ f (t; q8, q) (3)

The function f has an essential singularity at t 5 0, but this singularity is

such that the initial condition (2) is fulfilled.

When interaction is present the kernel can be represented as

^ q8, t | q, 0 & 5
1

! 2 p it
exp H i

(q8 2 q)2

2t J F (t; q8, q) (4)

and one can write for F the expansion (the short-time Schwinger±DeWitt

expansion)

F (t; q8, q) 5 o
`

n 5 0

(it)nan(q8, q) (5)

which, as a rule, is asymptotic and is usually utilized only in that sense. We

shall use the representation (4), (5) to test the analytic properties of the
evolution operator kernel in variable t, and, in particular, ascertain its behavior

for t ® 0.

For this purpose let us derive from (1) the equation for F

i
- F

- t
5 2

1

2

- 2F

- q82 1
q8 2 q

it

- F

- q8
1 V (q8)F (6)

Because the factorized function f still satisfies the initial condition (2), then

F should satisfy the initial condition
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F (t 5 0; q8, q) 5 1 (7)

It seems at first sight that it is possible to add to the right-hand side of (7)
an arbitrary function of q8 2 q which vanishes at q8 5 q. However, this is

not true. The equation for the coefficient a0

(q8 2 q)
- a0(q8, q)

- q8
5 0

taken from general recursion relations for an(q8, q), with the condition a0(q,

q) 5 1, determines unambiguously

a0(q8, q) 5 F (0; q8, q) 5 1

Our problem (1), (2) has a physical sense only for real, positive t , where

t 5 it (if the heat equation and heat kernel are considered), or for real t
(if the quantum mechanical evolution equation is considered). The same

restrictions initially hold for equation (6), too. But we can analytically con-

tinue the function F into the complex plane of the variable t using the

differential equation (6) with condition (7). Now the variable t may vary in

the entire complex plane t. There is no restriction Re t . 0 as holds for the

analytic semigroup.
If q is a regular point of the function V (q) and at any domain the

expansion in powers of D q 5 q8 2 q hold.

V (q8) 5 o
`

k 5 0
D q k V (k)(q)

k!
(8)

(the notation

V (k)(q) [
d kV (q)

dqk

is used here and will be used below), then one can use the concrete form of

the coordinate dependence of the coefficients an

F (t; q8, q) 5 1 1 o
`

n 5 1
o
`

k 5 0

(it)n D q kbnk(q) (9)

It is obvious that

o
`

k 5 0
D q kbnk(q) 5 an(q8, q) 5 2 Yn(q8, q)

where Yn are the functions introduced in Slobodenyuk (1993). The behavior

of Yn was studied in Slobodenyuk (1995), using the representation adduced

in Slobodenyuk (1993).
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Substitution of (9), (8) into (6) leads to recurrence relations for the

coefficients bnk

bnk 5
1

n 1 k F (k 1 1)(k 1 2)

2
bn 2 1, k 1 2 5 o

k

m 5 0

V (m)(q)

m!
bn 2 1, k 2 m G (10)

with condition b0k 5 d k0. Specifically,

b1k 5 2
V (k)(q)

(k 1 1)!
(11)

Expressions (9), (10) determine a formal solution of problem (6), (7).
As to the expansion in powers of D q in (9), one may expect that its convergence

range is equal to one for expansion (8) of the potential. The series in t in

(9) is usually treated as divergent. At first sight, it is always so. Let us

estimate the convergence of the series in (9).

First let n be fixed and k ® ` . Expressing bn 2 1,k 1 2 from (10) via the
coefficients with smaller k, we come to some linear combination of coeffi-

cients of type bn0,0 and bn1,1 with any indexes n0, n1 (for the sake of brevity

we shall write further only the terms with bn0,0, implying that the same

statements hold for the terms with bn1,1). The main growth for large k takes

place if the second index of bnk is diminished; (a) using the term V(k)bn 2 1,0/k!,

(b) using the expression on the left-hand side of (10).
In case (a) we get for k ® `

| b (a)
n 2 1, k 1 2 | , 2

(k 1 1)(k 1 2)

| V (k) |
k!

| bn 2 1,0 | (12)

Because the series (8) converges at some circle with radius R (q) the estimate

| V (k) |
k!

, 1

R k(q)

holds for k ® ` . So, for every fixed n and for k ® ` we have

| b (a)
nk | ,

| bn0 |
R k(q)

(13)

Contributions of type (13) correspond to the expansion in D q, which is

convergent for every fixed n with convergence range R (q).

In the case (b) for k ® ` we get

| b (b)
n 2 1, k 1 2 | , 2k/2 1 1(n 1 k)!

k! (n 1 k /2 2 1)!
| bn 1 k/2,0 |

The behavior of b (b)
nk for k ® ` depends on the behavior of bn0 for n ® ` .
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If bn0 decreases when n ® ` or increases more slowly than G ( a n) ( a is any

positive number), then

| b (b)
nk | ,

| bn0 |
G (k /2)

for k ® ` , i.e., these contributions will disappear at large k. If bn0 increases

as G ( a n) [here 0 , a # 1; Slobodenyuk (1995) showed that a cannot be

larger than 1], then for k ® ` and a , 1

| b (b)
nk | ,

| bn0 |
G 1±2 (1 2 a )k

so these contributions will disappear, too, with the growth of k. If a 5 1,

then the following estimate will hold (n is fixed, k ® ` )

| b (b)
nk | , | bn0 | k c r k (14)

In this case the expansion in D q in (9) will have a finite convergence range,

too, but it will be equal to the minimum of the two values R (q) and r .

Now let us examine the behavior of | bn0 | (the same will be also correct

for | bn1 | ) when n ® ` . Consider the decrease of n to 1 by means of the first

term on the right-hand side of (10),

| bn0 | ,
| bn 2 1,2 |

n
, ? ? ? , (n 2 1)!

2n 2 1 | b1,2n 2 2 | 5
(n 2 1)!

2n 2 1

| V (2n 2 2) |
(2n 2 1)!

(15)

Because | V(k) | , k!/R k(q) for k ® ` , then for n ® ` we get

| bn0 | , (n 2 1)!

2n 2 1(2n 2 1)
, n! (16)

The contributions taken into account in (15) provide the main growth

only for the potentials for which R (q) , ` . If potentials with R (q) 5 ` are

considered (e.g., polynomial ones), then one might conclude from (15) that

| bn0 | , 1/n!. But this is not so, in fact. As it shown in Slobodenyuk (1995),
the combination of contributions of the first term and terms from the sum

over m in (10) leads to an estimate of type | bn0 | , G ( a n).

So, for arbitrary potentials the series in t in (9) is divergent. But in our

estimates, in fact, absolute values of all contributions to every coefficient bnk

were summed. Nevertheless, for some potentials the cancellation of different

terms may occur. It can lead to convergence of the expansion in (9). For the
potentials considered in Sections 3±5 this cancellation takes place only for

definite values of the coupling constant.

Note that we really test expansion (9) for absolute convergence. So it

is enough for the convergence of double series that (9), in which, instead of
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bnk we take absolute values | bnk | , would converge for any order of summation.

Our consideration corresponds to the following order: at first the series over

k for every fixed n are summed and then summation over n is made. If one
assumes that there is convergence of the series in the index n, then, as shown

before, the convergence in index k will take place at every fixed n, and to

establish the convergence of the series in index n it is enough to determine

the behavior of the coefficients bn0, bn1 only (but not all bnk) at n ® ` .

3. MODIFIED POÈ SCHL± TELLER POTENTIAL

Let us introduce standard notation for the coupling constant g 5 l (l 2 1)/2

( l . 0) and investigate the modified Po
È
schl±Teller potential

V (q) 5 2
l ( l 2 1)

2

b 2

cosh2( b q)
(17)

for the convergence of the expansion (9).

Because the constant b is connected with the choice of length scale,

one can put b 5 1 without the restriction of generality. Further, for the sake

of brevity we shall denote

f (q) 5 2
1

cosh2 q
(18)

Then the potential reads V (q) 5 gf(q).

The potential (17) has the expansion of type (8) about every real point

q. Its convergence range is equal to R (q) 5 [( p /2)2 1 q 2]1/2 and is determined

by the distance to the nearest singularities of the function 1/cosh2 q placed
at the points q 5 6 i p /2. The derivatives can be calculated as follows:

V (k)(q) 5 g f (k)(q) (19)

where f (k) are represented as expansions in powers of f,

f (2n) (q) 5 o
n 1 1

l 5 1

a (2n)
l f l (q) (20)

f (2n 1 1) (q) 5 o
n 1 1

l 5 1
la(2n)

l f l 2 1 f (1) 5 o
n 1 1

l 5 1
a (2n 1 1)

l f l 2 1 f (1) (21)

To obtain all coefficients a (k)
l , it is enough to put a (0)

l 5 d l1 and take

into account

( f (1))2 5 4f 3 1 4f 2
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For a (2n)
l one has the recursion relations

a (2n)
l 5 4l 2a (2n 2 2)

l 1 4(l 2 1)(l 2 1/2)a (2n 2 2)
l 2 1 (22)

So, every derivative of the function f (q) is represented as a polynomial in

powers of this function.

From (10) one gets for the potential (17)

bnk 5
1

n 1 k F (k 1 1)(k 1 2)

2
bn 2 1, k 1 2

2
l ( l 2 1)

2 o
k

m 5 0

f (m)

m!
bn 2 1, k 2 m G (23)

where the derivatives f (m) are calculated via (20)±(22).

According to the note at the end of Section 2, it is enough for testing

the convergence of series (9) to examine the behavior at n ® ` of the
coefficients bn0, bn1 only. Introduce in this connection the functions

Bk(t, q) 5 o
`

n 5 0

t nbnk(q) (24)

and consider them for k 5 0, 1.

The analysis of relations (23) taking into account (20)±(22) shows that

B0, B1 can be represented in the form

B0(t, q) 5 1 1 o
`

n 5 1
(it)n o

n

l 5 1

( 2 1)l

l!
f l (q) b nl

3 &
l

j 5 1 1 l ( l 2 1)

2
2

j ( j 2 1)

2 2
5 1 1 o

`

n 5 1

(it)n o
n

l 5 1

( 2 1)l

l!
f l(q) b nl

G ( l 1 l)

2 l G ( l 2 l)
(25)

B1(t, q) 5 o
`

n 5 1
(it)n o

n

l 5 1

( 2 1)l

l!

l

2
f l 2 1(q) f (1)(q) b nl (26)

3 &
l

j 5 1 1 l ( l 2 1)

2
2

j ( j 2 1)

2 2
5 o

`

n 5 1

(it)n o
n

l 5 1

( 2 1)l

l!

l

2
f l 2 1 (q) f (1) (q) b nl

G ( l 1 l)

2 l G ( l 2 l)
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where

b nl 5
1

2n 2 l

(n 2 1)!

(l 2 1)!

a
(2n 2 2)
l

(2n 2 1)!
(27)

To estimate the behavior of b nl when n ® ` , we probe the asymptotics
of a

(2n 2 2)
l . Let us take a

(2n 2 2)
l for sufficiently large n and express a

(2n 2 2)
l with

the help of (22) via the coefficients with smaller n and l so as to come to

a
(0)
1 5 1 at the end. The maximal contribution arises in this procedure when,

at the beginning, n is diminished at fixed l by means of the first term on the

right-hand side of (22), and then, when the equality n 5 l 2 1 becomes

valid, n and l start to decrease simultaneously by unity at every step by means
of the second term in (22). For large n this gives the estimate

a
(2n 2 2)
l , 4n 2 l l 2(n 2 l) (2l 2 1)!

Then b nl behaves as

b nl , 2n 2 l l 2(n 2 l) (n 2 1)!

(l 2 1)!

(2l 2 1)!

(2n 2 1)!
(28)

Now one can evaluate the asymptotics at n ® ` of the coefficients of

the series (25), (26). Taking in (25), (26) in the sum over l the term with
l 5 n, we obtain for noninteger l that the coefficients in front of t n grows

in (25) as

f n

2n

G ( l 1 n)

n! G ( l 2 n)
, n!

and in (26) as

f n 2 1f (1)

2n 1 1

G ( l 1 n)

(n 2 1)! G ( l 2 n)
, n!

So, for noninteger l the series (25), (26), and, hence, (9) are asymptotic.

Let now l be integer ( l . 1). Then in (25), (26) in the sums over

l only the terms with l , l are different from zero, and, in fact, one should
take instead of o

n

l 5 1 the sum o
min{n, l 2 1}

l 5 1 . For n $ l 2 1 the sum over

l will always contain l 2 1 terms, and its dependence on n will be determined

only by the dependence on n of the coefficients b nl. And the dependence of

the latter on n, as is clear from estimate (28), at fixed l # l 2 1 and at

n ® ` is determined by the factor

b nl , (2( l 2 1)2)n (n 2 1)!

(2n 2 1)!
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So the coefficients in front of t n in (25), (26) behave at large n as

C n (n 2 1)!

(2n 2 1)!

with any positive C, i.e., the series will be convergent at the circle of infi-

nite range.

To obtain finally the function F (t; q8, q) it is necessary either to take

the coefficients bn0, bn1 from (25), (26) to calculate other bnk using (23), or

starting from B0, B1 calculate other functions Bk(t, q) from the equation

Bk 1 2 5
2

(k 1 1)(k 1 2) 1 1i - Bk

- t
1

k

it
Bk 1 g o

k

m 5 0

f (m)

m!
Bk 2 m 2 (29)

which in an obvious way is derived from (6) after the substitution

F (t; q8, q) 5 o
`

k 5 0
D q k Bk (t, q) (30)

and substitute them into (30).

In particular, for l 5 2 (g 5 1) we have the potential V (q) 5 2 1/cosh2

q, for which

B0(t, q) 5 1 2 f (q) o
`

n 5 1

(it)n

(2n 2 1)!!

5 1 2 f (q) ! p it

2
e it/2 erf( ! it/2) (31)

B1(t, q) 5 2
1

2
f (1) (q) o

`

n 5 1

(it)n

(2n 2 1)!!

5 2
1

2
f (1) (q) ! p it

2
e it/2 erf( ! it/2) (32)

With the help of (29) one is able to determine all coefficient functions Bk

starting from (31), (32) and then substitute them into (30). In this manner

the function F will be found.

We established that for integer l the expansion (9) was convergent if

| D q | , R (q) and the representation (4), (9) for the evolution operator kernel

was not asymptotic. The function F is single-valued analytic in the entire
complex plane of the variable t function and it has an essential singularity

at the infinite (t 5 ` ) point.

The potential (17) is representative of a class of potentials studied in

Osborn and Fujiwara (1983). It can be written as the Fourier transform
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V (x) 5 #
1 `

2 `

e i a x d m ( a )

where

d m ( a ) 5 2
g a d a

2 sinh( p a /2)

Osborn and Fujiwara (1983) showed that | an | , n2n/n! , n! when n ® `
for potentials of that class. This does not mean that the Schwinger±DeWitt
expansion should be divergent in every case, because this is only bound from

above, but not from below. So our result on the convergence of the expansion

for the potential (17) for integer l does not contradict the conclusions of

Osborn and Fujiwara (1983).

4. POTENTIAL V(q) 5 g/q2

We get another example of convergent series (9) by considering the

potential

V (q) 5
l ( l 2 1)

2

1

q 2 (33)

on the half-line q . 0. This potential is well studied and an analytic expression

for its kernel is known. Our purpose is to show how the method described

above can be applied to singular potentials.

Expansion (8) for the potential (33) has the finite convergence range

R (q) 5 q, the finiteness of which is connected with the singularity of V (q)
at the point q 5 0. The derivatives V(k) may be easily calculated

V (k)(q) 5 ( 2 1)k l ( l 2 1)

2

(k 1 1)!

q k 1 2 (34)

But for this potential an additional problem arises because of its singularity

at the origin. To obtain the kernel that provides fulfilment of the boundary

condition for the wave function c (q) at q 5 0[ c (q) should vanish at q 5
0] one needs to use an initial condition of more general form as compared
with (2). Namely, in this case

^ q8, t 5 0 | q, 0 & 5 d (q8 2 q) 1 A d (q8 1 q) (35)

where the constant A is determined by the requirement that the kernel does

not have a singularity at q 5 0 and/or q8 5 0 (t Þ 0). In correspondence

with (35) and analogously to (4), the kernel may be represented as
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^ q8, t | q, 0 & 5
1

! 2 p it
exp H i

(q8 2 q)2

2t J F ( 2 )(t; q8, q)

1 A
1

! 2 p it
exp H i

(q8 1 q)2

2t J F ( 1 )(t; q8, q) (36)

The equations for the functions F( 6 ) are given by

i
- F ( 6 )

- t
5 2

1

2

- 2F ( 6 )

- q 82 1
q8 6 q

it

- F ( 6 )

- q8
1 V (q8)F ( 6 ) (37)

and the initial conditions are

F ( 6 )(t 5 0; q8, q) 5 1 (38)

Directly in (37), (38), q8, q . 0. But it is possible to consider the analytic

continuation of F( 6 ) into the complex plane q and adopt negative values of

q. Then one may write

F ( 1 )(t; q8, q) 5 F ( 2 )(t; q8, 2 q) (39)

and study only one function F (t; q8, q) 5 F ( 2 )(t; q8, q), where q8, q may be

both positive and negative.

It is convenient to begin with positive q8, q. In this case the technique

described above can be used without any changes. From (10) with account

of (34) we take

bnk 5
1

n 1 k F (k 1 1)(k 1 2)

2
bn 2 1k 1 2

1
l ( l 2 1)

2 o
k

m 5 0

( 2 1)m 1 1 m 1 1

q m 1 2 bn 2 1, k 2 m G (40)

If we diminish n times the first index of bnk by means of (40), then we get

bnk 5
( 2 1)n 1 k

q 2n 1 k

(k 1 n 2 1)!

n!(n 2 1)!k! o
n

j 5 1 1 l ( l 2 1)

2
2

j (j 2 1)

2 2
5

( 2 1)n 1 k

q 2n 1 k

(k 1 n 2 1)!

n!(n 2 1)!k!

G ( l 1 n)

2n G ( l 2 n)
(41)

It is obvious that for noninteger l , | bnk | , n! when n ® ` . So, for noninteger

l the expansion (9) for the potential (33) is divergent. But if l is integer

( l . 1, because cases l 5 0, l 5 1 are trivial), then one can easy see from

(41) that only the coefficients bnk for n , l are different from zero, and in

(9) the series in powers of t is really a polynomial of finite degree l 2 1.
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Let us substitute (41) into (9) and make summation over k. Then we

get finally

F (t; q8, q) 5 1 1 o
`

n 5 1 1 2 it

2q8q 2
n

G ( l 1 n)

n! G ( l 2 n)
(42)

Derivation of (42) is made in supposition that | D q | , | q | . If this condition

is not satisfied, then calculations should be made with the expansion about

the point q8 in powers of q 2 q8. But because F is symmetric in q8, q, then
it is clear that the answer in this case would be the same as in (42). Note

that the representation (42) for F does not suppose that q8, q . 0. One can

put q8 and/or q negative and, hence, (42) gives expressions both for F ( 2 ) and

for F ( 1 ).

Expansion (42) has a singularity at q 5 0 (q8 5 0). For noninteger l
this expression is asymptotic, so it cannot be applied to analyze the behavior
of F at q8, q ® 0. It is correct only for sufficiently small values of variable

t /q8q. But for integer l , (42) becomes a finite series because in this case

1/ G ( l 2 n) 5 0 for n $ l and the sum over n should be made only to

l 2 1, but not to infinity. One can state, thus, that F( 6 ) is really singular at

the point q 5 0 (or q8 5 0). This feature, nevertheless, is not so dangerous,

because only the kernel (36) should be finite at q 5 0 (q8 5 0).
After substitution of (42) into (36) we get

^ q8, t | q, 0 & 5
1

! 2 p it
exp H i

q8 2 1 q 2

2t J H e 2 iq8q/t o
l 2 1

n 5 0 1 2 it

2q8q 2
n

G ( l 1 n)

n! G ( l 2 n)

1 Aeiq8q/t o
l 2 1

n 5 0 1 it

2q8q 2
n

G ( l 1 n)

n! G ( l 2 n) J (43)

Expanding exp{ 6 iq8q /t} into series in q8q /t and considering terms with a

singularity in variable q8q, we can see that if A 5 e 2 i p l , then all these terms
will be canceled and the kernel will be equal to zero when q8q 5 0 (this

will be zero of order l ). So, the initial condition (35) with A 5 e 2 i p l provides

fulfillment of the boundary condition for the kernel at the origin.

Finally the kernel may be represented as

^ q8, t | q, 0 & 5
1

! 2 p it
exp H i

(q8 2 q)2

2t J o
`

n 5 0 1 2 it

2q8q 2
n

G ( l 1 n)

n! G ( l 2 n)

1 e 2 i p l 1

! 2 p it
exp H i

(q8 1 q)2

2t J o
`

n 5 0 1 it

2q8q 2
n

G ( l 1 n)

n! G ( l 2 n)
(44)

For integer l , sums are made only to l 2 1 and this expansion is finite; for

noninteger l it is asymptotic.



1766 Slobodenyuk

Naturally, this result exactly coincides with well-known representation

^ q8, t | q, 0 &

5 e 2 i( p /2)( l 2 1/2) ! q8q

it
exp H i

q 82 1 q 2

2t J J l 2 1/2 1 q8q

t 2
5

1

! 2 p it
exp H i

(q8 2 q)2

2t J ! p q8q

2it
e 2 i( p /2)( l 2 1/2) e iq8q/ t H (2)

l 2 1/2 1 q8q

t 2
3 1 e 2 i p l 1

! 2 p it
exp H i

(q8 1 q)2

2t J
3 ! p q8q

2it
e i( p /2)( l 1 1/2) e 2 iq8q/ t H (1)

l 2 1/2 1 q8q

t 2 (45)

which may be derived directly by reducing the Schro
È
dinger equation to the

equation for cylindrical functions (here Jn is the Bessel function, H (1,2)
n are Hankel

functions of the first and second kinds). Strictly speaking, the validity of (44)

for noninteger l follows only from (45), but not from previous considerations.

Note that the essential feature of the representation (44) for the kernel

is the following: the sums over index n are divergent if l is noninteger and

are finite if l is integer. The kernel is well defined in both cases and the

apparent expression (45) allows us to study its behavior in different variables:
t, q8, q, or l . But if we do not know the exact solution, as usually occurs in

more complicated problems with other potentials, and if we have only an

asymptotic expansion of the form (36), then we will have many problems

for noninteger l and much fewer problems for integer l .

For example, for the potential (33) we cannot study from the asymptotic

expansion (44) the behavior of the kernel at q ® 0. In particular, if we did
not have the exact expression (45), but only the asymptotic one (44), we

would not know that the kernel has a zero of order l at q8q ® 0.

From the other side, if we try to get the expansion in powers of the

coupling constant g 5 l ( l 2 1)/2 for F starting from (42), we would get

after some transformations

F (t; q8, q) 5 1 1 o
`

k 5 1

g k o
`

n 5 k 1 2 it

q8q 2
n

Cnk

n!
(46)

where Cnk are the coefficients of the polynomial

&
n

j 5 1 1 g 2
j (j 2 1)

2 2 5 o
n

k 5 1
g kCnk (47)
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Equation (46) is a series of conventional perturbation theory. This series is

not simply divergent, but its coefficients are divergent, too. Consider the

contribution of the first order in g:

F (1)(t; q8, q) 5 g o
`

n 5 1 1 2 it

q8q 2
n

Cn1

n!

From (47) one can easy derive

Cn1 5 ( 2 1)n 2 1 n!(n 2 1)!

2n 2 1

Hence,

F (1)(t; q8, q) 5 2 2g o
`

n 5 1 1 2 it

2q8q 2
n

(n 2 1)! (48)

and the coefficient in front of g is a divergent series. Now we see that without

knowledge of the exact solution for noninteger l we cannot build even

conventional perturbation theory for F. Nevertheless, for integer l the

Schwinger±DeWitt expansion is convergent and it can be used for further
applications.

5. OTHER EXAMPLES OF POTENTIALS

The calculations made in Sections 3 and 4 may be easily repeated for

some similar potentials which are often used in one-dimensional many-

body problems (Olshanetsky and Perelomov 1983; Calogero et al., 1975;

Sutherland, 1971, 1972). These are the potentials

V (q) 5
l ( l 2 1)

2

1

sinh2 q
(49)

and

V (q) 5
l ( l 2 1)

2

1

sin2 q
(50)

To prove convergence of the series for F( 2 ) (t; q8, q) (q8, q . 0) it is enough

to make a little modification of the considerations of Section 3.

For the potential (49) denote

f (q) 5
1

sinh2 q
(51)
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and notice that

( f (1))2 5 4 f 3 1 4 f 2

i.e., it exactly coincides with the corresponding expression for the function

f (q) defined by (18) in Section 3. So all relations for the derivatives of f
obtained there and hence expressions for bnk, Bk , and F (now F( 2 )) hold in
this case. There exist only two differences: the function f is defined now by

(51), but not by (18), and the convergence range of the expansion (8) is R (q)

5 ( p 2 1 q 2)1/2.

Hence, convergence of (5) for the potential (49) when q8, q . 0 occurs

for integer l . The function F( 2 ) is a single-valued and analytic function in
the entire complex plane of the variable t for all q8, q . 0.

The potential (50) in the region 0 , q , p also can be considered in

a similar way. Denote

f (q) 5
1

sin2 q
(52)

and take into account that

( f (1))2 5 4f 3 2 4f 2

This expression differs from analogous ones for the potentials (17), (49) only

by the sign of the second term. So we are able to reconstruct the expressions
from Section 3 with only small changes: in (25), (26) there will appear an

additional multiplier ( 2 1)n 1 1, and the function f will be defined by (52).

The conclusion about convergence of the expansion (5) for F( 2 ) in the

region 0 , q8, q , p when l is integer holds for the potential (50). But both

these potentials are singular at q 5 0. So one is to consider the initial condition

(35) and the additional function F( 1 ) (t; q8, q) as in Section 4. It is enough to
continue F( 2 ) into the region q , 0 and use (38). Expressions obtained in Section

3 do not allow us to make any conclusions about the behavior of F for q , 0.

Let us consider another representation for an(q8, q). The potentials (49),

(50) may be written as follows:

V (q) 5 g 1 1

q 2 1 o
`

k 5 0

skq
k 2 (53)

where sk are known coefficients, g 5 l ( l 2 1)/2. The coefficient functions

an (q8, q) have the form of Loran series with a finite number of pole terms

an(q8, q) 5 o
`

k 5 2 n
o
`

l 5 2 n
q 88k ql a n

kl (54)
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Substitution of (5), (53), and (54) into (36) gives us algebraic recurrence

relations for d n
kl,

(n 1 k)d n
kl 6 (k 1 1)d n

k 1 1, l

5 1 (k 1 1)(k 1 2)

2
2 g 2 d n 2 1

k 1 2, l 2 g o
`

m 5 k 1 n 2 1

smd n 2 1
k 2 m, l (55)

If k 1 n 2 1 , 0, then the sum in the last term of (55) should be equated

to zero. One can find solutions of equation (55) and be convinced of the

validity of the representation (54). It is obvious, that the terms in an most

singular at q8, q 5 0 do not depend on sm and they exactly coincide with

the ones for the potential (33).
We know that F ( 2 ) (q8, q . 0) for the considered potentials is represented

by convergent series of type (9). Then there exist representations of type (5),

(54) and the Loran series (54) is convergent at the polycircle of finite radii

pierced at zero. For this series the sign of q has no meaning. One may

consider both q . 0 and q , 0. Convergence will take place in any case.
One can state that convergence of expansion (5) for F( 1 ) follows from

its convergence for F( 2 ). The latter was proved earlier. So we established

that for the potentials (49), (50) the Schwinger±DeWitt expansion (36) is

convergent for integer l . Singularities of F ( 6 ) at q8, q 5 0 cancel each other

in the combination (36) if A 5 e 2 i p l as in the case of the potential (33).

6. CONCLUSION

Usually the Schwinger±DeWitt expansion is used asymptotically. Its

general property an increase of the coefficients an(q8, q) as n! for n ® ` [or

as G (n (L 2 2)/(L 1 2)) if the potential is polynomial of order L) (Osborn

and Fujiwara, 1983; Slobodenyuk, 1995). Such growth always takes place

when no cancellations of different contributions to an occur. This is so for

most potentials. But there exist some potentials for which cancellations occur.
Examples of such potentials were considered in present paper. We proved

the convergence of the Schwinger±DeWitt expansion for them when the

constant l is integer and divergence when l is noninteger.

Besides the potentials mentioned above, one more example is known

(Slobodenyuk, 1996), which has the property of convergence of the expan-

sion (9):

V (q) 5 a 2q 2 1
l ( l 2 1)

2

1

q 2 (56)
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The expansion (5) converges for this when l is integer. But the convergence

range is finite, contrary to the examples of this paper. It is natural because

the expansion for the harmonic oscillator V (q) 5 a 2q 2 has a finite convergence
range. And this is so for the perturbed oscillator (56), too.

So, we have discovered the existence of a class of nontrivial potentials

in quantum mechanics for which the Schwinger±DeWitt expansion is conver-

gent and for which the initial condition for the evolution problem is fulfilled

in a rigorous (analytic) sense, but not only asymptotically (when F is not

analytic at t 5 0 and its value at the origin is determined from the condition
of continuity).

The potentials belonging to this class have at least two remarkable

features: (1) the Schwinger±DeWitt expansion is convergent for them, hence,

other expansions which may be derived from it are convergent, too, and

many problems connected with the divergence of the expansions are absent

for such potentials, and (2) the potentials of this class have discrete coupling
constants, which corresponds to the discreteness of charge in nature.

This is why the potentials from this class are well studied. But research

using quantum mechanical models is only preparation for practical use relating

to physical phenomenon. One can hope to construct a fundamental theory

of elementary particles as a result of applying this approach to quantum field
theory. It is possible to introduce interaction in the field theory analogous to

the quantum mechanical potentials studied in this article. One such quantum

field model is under consideration and will be described in a subsequent

paper. The model conserves the essential features discussed above.
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